Comparison of methods used for quantifying prediction interval in artificial neural network hydrologic models
نویسندگان
چکیده
منابع مشابه
Comparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Raini Cashmere Goat
The artificial neural networks (ANN) are the learning algorithms and mathematical models, which mimic the information processing ability of human brain and can be used to non linear and complex data. The aim of this study was to compare artificial neural network and regression models for prediction of body weight in Raini Cashmere goat. The data of 1389 goats for body weight, height at withers ...
متن کاملComparison of gestational diabetes prediction with artificial neural network and decision tree models
Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...
متن کاملComparison of the Accuracy of Nonlinear Models and Artificial Neural Network in the Performance Prediction of Ross 308 Broiler Chickens
This study aimed to investigate and compare nonlinear growth models (NLMs) with the predicted performance of broilers using an artificial neural network (ANN). Six hundred forty broiler chicks were sexed and randomly reared in 32 separate pens as a factorial experiment with 4 treatments and 4 replicates including 20 birds per pen in a 42-day period. Treatments consisted of 2 metabolic energy le...
متن کاملA simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
[1] One of the principal sources of uncertainty in hydrological models is the absence of understanding of the complex physical processes of the hydrological cycle within the system. This leads to uncertainty in input selection and consequently its associated parameters, and hence evaluation of uncertainty in a model becomes important. While there has been considerable interest in developing met...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modeling Earth Systems and Environment
سال: 2016
ISSN: 2363-6203,2363-6211
DOI: 10.1007/s40808-016-0079-9